Energy and Exergy Based Optimization of Licl-Water Absorption Cooling System

نویسندگان

  • Bhargav Pandya
  • Jatin Patel
  • Vinay Kumar
  • Vijay Matawala
چکیده

This study presents thermodynamic analysis and optimization of single effect LiCl-H2O absorption cooling system. Thermodynamic models are employed in engineering equation solver to compute the optimum performance parameters. In this study, cut off temperature to operate system has been obtained at various operating temperatures. Analysis depicts that on 3.59 % rise in evaporator temperature, the required cut-off temperature decreased by 12.51%. By realistic comparison between thermodynamic first and second law analysis, optimum generator temperature relative to energy and exergy based prospective has been evaluated. It is found that optimum generator temperature is strong function of evaporator and condenser temperature. Thus, it is feasible to find out optimum generator temperature for various combinations of evaporator and condenser temperatures. Contour plots of optimum generator temperature for several combinations of condenser and absorber temperatures have been also depicted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A thermodynamic model for exergetic performance and optimization of a solar and biomass-fuelled multigeneration system

Integrated energy systems utilizing renewable sources are sustainable and environmentally substitutes for conventional fossil-fired energy systems. A new multigeneration plant with two inputs, such as biomass and solar energy, and four useful outputs, such as cooling, heating, power, and distilled water, is presented and investigated in this paper. The proposed system includes evacuated tub...

متن کامل

The development and assessment of solar-driven Tri-generation system energy and optimization of criteria comparison

In this research, the thermodynamic investigation of the tri-generation system is performed by the first and second law of Thermodynamics. The trigeneration system under study consists of three subsystems including the solar subsystem, Kalina subsystem and lithium bromide-water absorption chiller subsystem. The proposed system generates power, cooling and hot water using solar energy. The syste...

متن کامل

A thermodynamic model for exergetic performance and optimization of a solar and biomass-fuelled multigeneration system

Integrated energy systems utilizing renewable sources are sustainable and environmentally substitutes for conventional fossil-fired energy systems. A new multigeneration plant with two inputs, such as biomass and solar energy, and four useful outputs, such as cooling, heating, power, and distilled water, is presented and investigated in this paper. The proposed system includes evacuated tub...

متن کامل

Compare three different algorithms (MOPSO, SPEA2, NSGA-II) for Multi Objective Optimization of a novel Combined Cooling, Heating, and Power (CCHP) system based on organic Rankine cycle

Recently Debates about Energy and the issue of global warming have led to the use of new energy. One of the best options for this purpose is the use of a new hybrid system of power, heating and refrigeration, with its thermal source of solar and geothermal energy. In the present study, used a combined cooling, heating and power system based on the organic Rankine cycle and the Ejector Refrigera...

متن کامل

Thermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production

In this study, a new proposed multi-generation system as a promising integrated energy conversion system is studied, and its performance is investigated thermodynamically. The system equipped with parabolic trough collectors and biomass combustor to generate electricity, heating and cooling loads, hydrogen and potable water. A double effect absorption chiller to provide cooling demand, a proton...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017